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22208

In this arivicle, a semi-analytical theory of general planetary
perturbations is developed, which is somewhat akin to Hill's
theory. In both?;mthods the first order perturbations coincide,
put the theories of perturbations of higher orders are different.
The inconveniences of Hill's method, namely: the triple integral
in the perturbations of the radius vector and the redundant constant
of integration, do not appear here. The short and the long period
terms containing'the squares of the small divisors are localized
and ¢§ﬁbined togethe?ih The existence of such a direct way of
separaﬁing ﬁhese important terms from the remaining perturbations
constitutes a significant characferistic of a planetary theory.‘
The form of decomposition of perturbations as used in this article
leads to a system of differential equations easily integrable by

Hill's procedure and to a symmetrical scheme for the computation of

[
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verturbations of nigher orders.
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Notations

the mass of the disturbed planet. The mass of the sun is taken as unity.
the mass of the disturbing plaaet.

the Caussian constant.

k2 (1 +m).

the undisturbed position-vector of the planet m.

|7].

the unit vector normal to the undisturbed orbit plane of the planet m.
the angular velocity of rotation of the frame (¥, RxT, R).

the unit vector in the direction of 7.

the undisturbed position vector of the planet m’.

the perturbation in the position vector of the planet m.

the disturbed position vector of the planet m.

the perturbations in the position vector of the planet m’.

the disturbed position vector of the planet m’.

- the undisturbed vel'ocit.:_y;:;oi the planet m.

the undisturbed mean anoma.ly of the planet m.

the undisturbed eccentricity of the planetm.

the undisturbed mean motion of the planet m.

the undisturbed semi-major axis of the planet m.

a(1-e?)

the undisturbed true anomaly of the planetm.

the del-operator with respectto T,

the del-operator with respect to 7.

the base of natural logarithms.

T-T.

the perturbations of the ktP order in the position vector of the planet m.
the perturbations of the k" order in the position vector of the planet m’.

I'KI - I'K .

’

1": =~ (1 - rl) - the main part of the disturbing function.
P pr3

the idemfactor.
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Introduction

In this article a numerical theory of general planetary perturbations is developed. The per-
turbations are obtained in the standard form of series containing the pericdic, the secular and
the mixed terms. The coefficients of terms are numerical; they are obtained by double harmonic
analysis as applied to the force components, and subsequent integration. The numerical theory
of perturbations in the coordinates escapes the inconveniences of the numerical theory in the
elements: for example, since the eccentricity and the sine of the inclination do not appear as
divisors in the differential equations, no numerical difficulties arise in the case of nearly circular
orbits.

The method presented here is somewhat akin to Hill's method (1874), at least where the first
order perturbations are concérned: in both methods the first order perturbations coincide. The
theories of perturbations of higher orders in both methods are different.

We determine the perturbations in rectangular coordinates directly without using the per-
turbations in polar coordinates as an intermediary means, as is done in Hill's method. Some other
inconveniences are removed in the theory presented here: the triple integral and the seventh
constant of integration so peculiar to Hill's method do not appear; the components of perturba-
tions along the radius-vector are determined in a more direct manner; and the difficulties as-
sociated with determining the redundant constant of integration vanish.

In Hill's method the undisturbed true anomaly is taken as the independent variable. Such a
choice causes numerous inconveniences if the perturbations in the motion of the disturbing body
are also to be taken into account. For this reason the universal variable, time, is used in our
exposition.

Since the advent of electronic machines, general perturbations theories can successfully
compete with numerical integration procedures. The theory of Mars in Hansen's coordinates
recently developed by Clemence (1949, 1961) brilliantly confirms this statement. The reference
ellipse representing the undisturbed motion can be chosen in a variety of ways. The only restric-
tion imposed is that the difference between the disturbed and undisturbed motions be small, of
the order of the perturbations.



P

In the article by Musen and Carpenter (1963) a decomposition of the perturbations in the posi-
tion vector along 7, v, and R was suggested. In e présent work we suggost a dczcomposition
along 7°, Rx7°, and R. This form of decomposiion leads to a more compact and more syrmmetri-

cal scheme for developing perturbations of higher order than the author's previous scheme.

The equation of the motion of the planet m as referred to the rotating undisturbed frame T°,
Rx T°, R has the form
d257 = dST - =~ N A
-d_t§—+ pr?t—+¢x(¢x8r) +gpx or
= w?v T—l—_:- -2 +/J.7vﬂ(?+5?,?’+8?') . 1)
[T+s7| T :
Substituting
- #}/5 —
vo= - R,
T
ab i uyp dr =
at - T T s dt R,
into (1), introducing the differential cperator
D = & - V+ 8F -V,
and taking the equation
1 §f  3rr - 8T
VD - = -t ——
r r r5

into account, we can re-write (1) in the form

d?28T 2uyp- d8T wlp - -
dt2+ 2 R ot Rx(RxSr)
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In applying the operators v or v’ we consider every function as a function of Fand 7’ only and the
perturbations §r and 8r' are considered as relative constants. The operator EP accomplishes the
development of (3) into a power series with respect to the perturbations.

Decomposing 8T o ung the axes T°, Rx 7°, k and putting

5T = £F° + MR T° + LR, ' ()
we have in the relative motion
18T dé _, dn - - df -
%t—r=—ir°+'%er°+—%»R:, (8)
d?st _ d?¢ __ d*n - . d*l -
dt?2  de? rOTdt2er°+ dtzR' (6)
Substituting (4) through (6) into (2), we obtain
d2 2uyp dn [P 2 2:7¥p dr _ _
R R IE I
71 1 df p dr P 1 _ 2
dt’ U 63'5“_473’7‘*‘“' (8)
d?l  u?
rreier SRR 2 (9)
where we put
= = F-F,
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We shall make use of the standard method of developing the perturbations into power series
with respect to the disturbing mass and put

T = T, + T, + T, + **

—l
!

£, T° +m Rx ™ + [ R
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AT ' (10)
F = F ~F,+F; + ’ (1)
where T, €, 7, o :::h, are ¢f the order kinm’ .
In the previous article by Musen and Carpenter (1563}, on the basis of the formula
VED = V+(?1'VV+?1’-V‘V)
+ r/? <VV+T)! - V'V s 1 - V4T, - 9N2V
|\ 72 2 ) 2 (rx Y )
'
+ [(ra-VV+r3’-V’V)+(rl‘V+r1'-V’)(r2~V+r2'-V)\7
+1 T.-V+r 9339 + ...
3'<r1 T ) ’
it was found that
S - m (B _ T
Fl = v = i+m<p3 - r:3> + (12)
- _ 3?.?1?1 3??1'?1 15 ?(? ?1)2
Fy 7 s 7T s TTT T3
+T, VUV + T - vV, (13)
D ooE S imm oo Lmm o mm
F3 Fkr r,rptrr; r,tr rzrl)
15 ., .. . 3%, t,°T
--r—~rr1 rr2 r +'§' .5
—m o = = =g
_Lsrr TT, r1_1_Sr1(r rl)
2 7 2 o7
(7 .7 \3
+§_5 r(r rl)
2 r
+ [(?z-vvm?z'-v'vn)
+l~—‘-v+""V'2VQ
7 (F, - 0+7) V) (14)



By substituting

and

2 ;
d K 2,1,./5 dng 2<£_+-2_>§ +2.L~/'ﬁdr - 2
4 3 K =

de 2 2 3 dt c -
d? - kS
K - 2
dt2 r3 LK M ZK '
k = 1,2, 3, '
where
5, - T F
H = Ex T° Ex ,
ZK = R~ FK ’

which are of the same form as (7)-(9). Thus, our problem now is to integrate the variational equa-
tions of the form (7)-(9) with the right sides known.



Integration procedure.

We shall make use of the substitutic::

£ = ur + %E {(w—2u) dt (15)
Vo
g o= 2B {(w- 2u) dt (18)
J
{ =7, ‘ (17)

which reduces (7)-{9) to the form integrable by Hill's procedure. Substituting (15) and (16) into
(7), and making use of the relation

d?r = z_E._i
de? H r3 r?

We obtain
d?u 2 ‘ 1drdw _ wp2=
el CRE DI b - (18)
From (15) and (16), we have
_ 1 dn dr 2& -
el R 1)
Differentiating (19) and taking (8) into consideration we obtain
dv _ prH
dt 7 ﬁ_ (20)
and
_ pr H
w = K3+j——-ﬁ dt , (21)

where the integral sign represents the integral obtained in a formal manner; X,is the constant
of integration.

Taking (20), (21) and the equation

dr _ pesinf



a2 L2 \ 2 3
— (u—2i{_) +’———;,/u-2::3\. = :{;+ff.“_ dt
dt- M 2\ ! / L
The last equation can be integrated by using Hill's procedure and we have
r r .
u = 2:\’3*'}\‘5(:05{"*3("5;“:
[.M = esinf _ —
—lT- Hlrrsinl|f-1f) dt
Jv® :
T — w2 rH
1< sin (f—f)dt e (22)
r? P

where X, and X, are constants ol integration and 7, f are considered as temporary constants; after
the integration is complete

A]

dQey are replaced by rand f.

d
The double integral in (£2) can be simplified through integration by parts, and we obtain

T — 2u?rH H 2urrH - =1
g% sin (f-f) dt Lp-r—dt = %r—dt - #;: [cos (f-f) + e cos det .
T PyP

Taking this last relation into consideration we deduce from (22) after some easy transformations

r r
u = 2K3+Klgcosf+Kzzsinf+A,
in which
A = S(M?"?TN? RxF) dt
where
an T
M = %’smn(f—f)
1-e?
o Tl o e (F- 21
N = (1'_e2)3/23 +2ecosf-2ecos(f-2f

- 2cos (?—f) +2}

The expressions M and N remain the same for the perturbations of all orders. They are to be de-
veloped into a double Fourier series with respect to the mean anomaly ! and with respect to the
auxiliary mean anomaly 1, associated with the auxiliary true anomaly f.




After the integration is periormed 1is replaced by 1. We have

r 3 1 1 2
J"gcosfdl = - Fent T3 l‘ezésinf'f‘__r_'sinf (25)

2}/1_7 a?

r ) e 2 f 1 \ el
f; sinfdl = -y - eF ‘r’f‘f PCLu LTy o cos? i {2
J ' A = /
Putting
S a j(w -2u) dt
and taking (21), (24), (25) and {26) into account, we deduce
g - 2% K _ 7L 1 r?
= o nt o |3ent 1-e* 7 sinf- 2 sin f
1~-e
K, ;2
L2 2 X
+ l1-e n L2 (2cosf+ecoszf)+K4+B
and, after some easy transformations,
3 X 2 1
s = Y (—K3+eK1) nt = ——i—% (2$inf + 5esin2f>
—.Z a
H‘I e
K, 1-e? K, 2 1 1
+——n"“—‘—n'a_‘<2cosf+§e+§ecos2f>+K4+B , (27)
where
narH
B = || ———dt - | 28dc . (28)
1-e?
The formulas for the computation of £, » and { become
£ = ru+ nae sin f s | (29)
1~ e?
2 1- 2
n = na - e s (30)
g =K5—;~cosf+K6-;-sinf+C , (31)



where C is the standard expression

na I _ e
= e e LT o T o i
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is made.

Determination of constants of integration.

We consider here the determination of constants of integration for the case when the elements
are osculating at the epoch t = 0 and for the case when they are mean. If the elements are os-

culating, then we have
e dér
(5t)y = 0. (T>o = 0, (33)

where the zero-subscript designates the value of the expression at the epoch. From (33) we

deduce

g
u, = 0, wy, = 0, <d—f\=o. S, = 0. (34)

Taking (21) into account, we obtain

(35)

K. - - [(oat_ |
3 j\/l'e2 o

Differentiating (24) and taking the equations



into account, we deduce from (34):

Ty s
K — £ d ~ £ N
t K, g ocosf, K2 5 sinf A0 23,
sin f cos f, t e
- 7 . — = - 4
b [ 2 T G
i et

where we put

From these last equations we obtain

cos f, + e A' r

P

bt

2y1-e? 1
ST <2cosfo THe +§-ecos2f0> - B, .

The mean elements can be defined in several ways. We accept here the following definition:
the elements are mean if

(1) the perturbations of the true longitude A with respect to the orbit-plane defined by these
elements do not contain the terms of the form

K,, Kt, K¢ cos I and K®) sinl; and (36)

10



(2) the expression for the "third coordinate’ { does not contain the terms of the form

K<) cos L, K sin i

We have
r\" 1
) cosmf = FCM™ +C""cosl + Cr™cos2l + <0
r n
(;) sinmf = s sinl + Sz""n sin2l + ¢
where
cin.m = xin.m + x_r;.m

Spm

Xpm - Xge

and X»'" are Hansen's coefficients.

Let us start with the determination of constants of integration in the perturbations of the
first order. Perturbations of the first order in the true longitude are given by the expression n/r,
where 7 = n,, and consequently the terms-(36) must be absent in the expression

n 3 {a\?
o = ?\-.(_r') (K, teK,) nt

K

1 1
- ——————|2sinf +—esin2f)
2
nVl-e’(
K, Y1 -e?

1
+‘-—n—'-<2cosf +—;'e+5ecos2f)

tZK 3B 87

We have to separate the terms of the form (36) in the development of a2/r?B:

2
a .
;TB = ag +Bynt taycosl + B sinl 4 er 37")

11



The condition for absence of the constant term in (37') leads to the equation

1-e2
2 1 ) S
+ n (‘Lcoo'l + % e*3 eCoo':!) +7C MK, t e, = 0 . (38)
In a similar way we deduce

K, 1
"-—-'1——2(28‘0'l +'2'esl°'z> tB, = 0, (39)
-e

Kz}/l—':<

xﬂ.l.,,ieCOZ) +°’x = 90 ' (40)

3
+3m Co*° (<K, teK) + 8, = O . (41)
Separating in C the terms with the argument ¢,
C = c,cosl + s,sinl + ++¢ |

1 1

we obtain, taking (31) mto account,

@K(’:”+c1 =0 , ‘ (42)

K, Sll'l ts, = 0 . (43)

In the planetary case the solutions of equations (38)-(43) can be found without any difficulty,
because the coefficients only of one unknown in each equation are not small. The coefficients C,™"
can be computed either by using the classical analytical expressions or by Cayley's tables (1861),
or by means of harmonic analysis. The latter procedure is preferable if the eccentricity is not
very small,

Determination of constants of integration in higher order perturbations requires some addi-
tional considerations. Let r,, r,, ‘- be the perturbations in the radius-vector rand A, A,,
be the perturbations in the true longitude A of the first, second, etc., orders. From

ar or\ 1( , 97 *T 37
tilraar t A X )t TN az+2" Ay TNt anz )1t

12



and substituting

ar . ar _ = . 82T T - a7 -
or T~ ™, 3\ T Rxr, arz'o' Jran - Rxr°, anz O F
we obtain
€ % ry oMy Tty
- 1., -
£ % rp -3t My o v,
consequently,
T
Ay T r

or, taking (30) into account,

N

A, = {1\/1—e’% (S;-4,8) .

where S, corresponds to the first and S, to the second order perturbations. As we see, before
the determination of the constants of integration of the second order in the case of mean elements
a correction term -£; S, must be added to B,. For the perturbation of the third order a similar
correction term will depend upon ¢, S,, £,, S,.

Conclusion

A revival of the general interest in planetary theories can be observed in our time. Several
scientific institutions are dedicating their time and efforts to the astronomical solution of the
planetary problem. The results by Brouwer (1944), Gontkovskaya (1958) and Danby (1962) must
especially be mentioned. A considerable amount of work on the theoretical exposition as well as
on programming has also been done at the Theoretical Division of Goddard Space Flight Center.
In the present article we suggest a new scheme which is convenient for computing the perturba-
tions of the first as well as of higher orders.

The determination of constants of integration in the case of both the osculating and the mean ele-
ments is a straightforward process in the proposed scheme. An important feature of the scheme is
that the squares of small divisors, as caused by the commensurability of mean motions, are intro-
duced by integration of only one expression,namely w-2u. The short and the long period terms
containing the squares of small divisors constitute a significant part in the perturbations ¢, 7, (.
The existence of such a direct way of separating these terms from the remaining perturbations

13



constitutes a significant part of a planetary theory. The development here is kept in the form
which facilitates comparison with the results obtained on the basis of the classical form of Hill's
theory, if necessary.

References

Brouwer, D., Integration of the equations of general planetary theory in rectangular coordinates,
Astr. Journ. 51, 37-43, 1944

Cayley, A., Tablgs of the developments of functions in the theory of elliptic motion, Mem. Roy.
Astron. Soc., 29, 191, 1861

Clemence, G. M., First-order theory of Mars, Astr. Papers of Amer. Ephem., Vol. X1, Part I,
Washington, 1949

Clemence, G. M., Theory of Mars, Completion, Vol. XVI, Part II, 1961

Danby, J. M. A., Integration of the equations of planetary motion in rectangular coordinates, Astr.
Journ. 67, 287-299, 1962

Gontkovskaya, V. T., The application of modern computational techniques to the analytical methods
of celestial. mechanxcs (Rnssia.n) B\m Inst. Theoret. Astron. 82, 592-629, 1958

Hill, G. W., A method of computmiabsolute perturbations, Astr. Nachr. 83, 209, 1874

Hill, G. W., Collected works, 1, 151, Washington, 1905

Musen, P. and Carpenter, L. On the general planetary perturbations in rectangular coordinates,
Journ. of Geoph. Res., vol. 68, No. 9, p. 2727, 1963

Proskurin, V. F., The theory of motion of Ceres, Trudy Inst. Theor. Astronomy, II, Leningrad,
1952

14



